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Remember: 
Collisions

Let 𝑘1 and 𝑘2 be two different keys. 
There is a collision in the hash table if 
ℎ 𝑘1 = ℎ(𝑘2).

Ideal: Design a collision-free hash 
function.

Reality: Hard to design a ℎ(𝑘) that 
creates random slot indices from 
non-random keys. Assume collisions 
will occur.

Solution: Implement collision 
management strategies.
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Collision Management Strategies

Is the slot occupied? 
Search for the next one 

available.

Multiple items in a slot? 
Store them in a Doubly 

Linked List.

Open AddressingChaining

01 02
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∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 1 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 2 mod 𝑚.
• Repeat until you find an empty slot.

Open Addressing Idea

Insert(                ):

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
15 mod 11 = 4. It is available.
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15 mod 11 = 4. It is available. Solved!
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Open Addressing: 
Probing

ℎ: 𝑈 × 0,1,…𝑚 − 1 → {0,1,… ,𝑚 − 1}

Probe sequence:
ℎ 𝑘, 0 , ℎ 𝑘, 1 ,… , ℎ(𝑘,𝑚 − 1)

Linear Probing:
ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑖 mod 𝑚

Quadratic Probing:
ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑐1𝑖 + 𝑐2𝑖

2 mod 𝑚

Double Hashing:
ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2(𝑘) mod 𝑚
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Probing Patterns

Images from https://programming.guide/hash-tables-open-addressing.html

Linear Probing Quadratic Probing Double Hashing

https://programming.guide/hash-tables-open-addressing.html
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0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 12 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 22 mod 𝑚.
• Repeat until you find an empty slot.

Example: Quadratic Probing

Insert(                ):

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
17 mod 11 = 6. It is available.



∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 12 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 22 mod 𝑚.
• Repeat until you find an empty slot.

Example: Quadratic Probing

Insert(                ):

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
17 mod 11 = 6. It is available. Solved!



algorithm Search(T:array, key:ℤ)
let m be the capacity of T
i ← 0

repeat
j ← h(key, i)

if T[j] is not null and T[j].key = key then
return j

end if

i ← i + 1
until T[j] is null or i = m

return -1
end algorithm

Open Addressing Algorithms

algorithm Insert(T:array, x:item)
let m be the capacity of T
i ← 0

repeat
j ← h(x.key, i)

if T[j] is null then
T[j] ← x
return j

end if

i ← i + 1
until i = m

end algorithm
error: “table overflow”

algorithm Delete(T:array, x:item)
j ← Search(T, x.key)

if j ≠ -1 then
T[j] ← null

end if

end algorithm

That’s it?

13An item x has attributes x.key (integer), and x.data.



Delete when using Open Addressing
Do not delete! Do Something else.
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Delete(             ):

25 mod 11 = 3, and the key of T[3] is 25, so, delete!

Why Not? Let’s Delete Something

∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10
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Now Search(               ):

13 mod 11 = 2, but the key of T[2] is 2.
14 mod 11 = 3, but T[3] is null. So…

Is                in the hash table?! IT IS! But we cannot reach it now.

Why Not? Let’s Delete Something

∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10
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Solutions:
1) Label item as deleted.
2) Use a dummy object (aka. Tombstone).

Remember to update the Insert, Search, 
and Delete functions adequately.



Issue: Clustering!
Occupying empty slots breaks uniformity
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Issue: Clustering
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Also, longer search times if falling on long clusters.
Goal: Adjust 𝑚 such that 𝛼 =

𝑛

𝑚
is less than some threshold.



Open Addressing: 
Analysis

Load Factor: 𝛼 =
𝑛

𝑚
< 1.

● Uniform Hashing Assumption: the 
probe sequence of each key is equally 
likely to be any of the 𝑚! permutations 
of {0,1,… ,𝑚 − 1}.

● An insert requires at most 1/ 1 − 𝛼
probes.

● A successful search requires at most 
1

𝛼
ln 1/ 1 − 𝛼 probes.

● An unsuccessful search requires at most 
1/ 1 − 𝛼 expected probes.
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Table Resizing

Goal: 𝛼 ≤
1

2

Double 𝑚 when 𝛼 ≥
1

2

Halve 𝑚 when 𝛼 ≤
1

8

Goal: 𝛼 constant

Double 𝑚 when 𝛼 ≥ 8

Halve 𝑚 when 𝛼 ≤ 2

Open AddressingChaining

01 02

Note: Do not forget to rehash the values after resizing the table.
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Load factor: 3/5 = 0.6. Resize required.

New table capacity set to 11.

Tuple (5, dolor) is now at index 5.
Tuple (3, sit) is now at index 3.
Tuple (4, amet) is now at index 4.

Rehashing Example
0       1   2      3           4

+------------+---+---+----------+-----------+
| (5, dolor) |   |   | (3, sit) | (4, amet) |
+------------+---+---+----------+-----------+

0   1   2      3           4            5       6   7   8   9   10
+---+---+---+----------+-----------+------------+---+---+---+---+---+
|   |   |   | (3, sit) | (4, amet) | (5, dolor) |   |   |   |   |   |
+---+---+---+----------+-----------+------------+---+---+---+---+---+
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Hash Table Limitations

Memory ConsumptionRange Queries Real Data

We need extra 
capacity than the 

number of keys we 
have.

Previous(𝑘)? 
Next(𝑘)? 

Between(𝑘1,𝑘2)?
MaxKey()?
MinKey()? 

Keys may not be 
independent.

There could be bias.
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Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

𝒉 last slide = End

Do you have any questions?
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