
Hash Table
with Open

Addressing
CS 251 - Data Structures

and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Store items directly in the
table

Open Addressing
01

3

Open Addressing
01

Store items directly in the table

4

Remember:
Collisions

Let 𝑘1 and 𝑘2 be two different keys.
There is a collision in the hash table if
ℎ 𝑘1 = ℎ(𝑘2).

Ideal: Design a collision-free hash
function.

Reality: Hard to design a ℎ(𝑘) that
creates random slot indices from
non-random keys. Assume collisions
will occur.

Solution: Implement collision
management strategies.

5

Collision Management Strategies

Is the slot occupied?
Search for the next one

available.

Multiple items in a slot?
Store them in a Doubly

Linked List.

Open AddressingChaining

01 02

6

∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 1 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 2 mod 𝑚.
• Repeat until you find an empty slot.

Open Addressing Idea

Insert():

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
15 mod 11 = 4. It is available.

7

∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 1 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 2 mod 𝑚.
• Repeat until you find an empty slot.

Open Addressing Idea

Insert():

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
15 mod 11 = 4. It is available. Solved!

8

Open Addressing:
Probing

ℎ: 𝑈 × 0,1,…𝑚 − 1 → {0,1,… ,𝑚 − 1}

Probe sequence:
ℎ 𝑘, 0 , ℎ 𝑘, 1 ,… , ℎ(𝑘,𝑚 − 1)

Linear Probing:
ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑖 mod 𝑚

Quadratic Probing:
ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑐1𝑖 + 𝑐2𝑖

2 mod 𝑚

Double Hashing:
ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2(𝑘) mod 𝑚

9

Probing Patterns

Images from https://programming.guide/hash-tables-open-addressing.html

Linear Probing Quadratic Probing Double Hashing

https://programming.guide/hash-tables-open-addressing.html

∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 12 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 22 mod 𝑚.
• Repeat until you find an empty slot.

Example: Quadratic Probing

Insert():

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
17 mod 11 = 6. It is available.

∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Idea: Search the hash table for an empty slot.

How?
• Try ℎ 𝑘 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 12 mod 𝑚.
• Taken? Then try ℎ 𝑘 + 22 mod 𝑚.
• Repeat until you find an empty slot.

Example: Quadratic Probing

Insert():

13 mod 11 = 2, it is taken.
14 mod 11 = 3, it is taken.
17 mod 11 = 6. It is available. Solved!

algorithm Search(T:array, key:ℤ)
let m be the capacity of T
i ← 0

repeat
j ← h(key, i)

if T[j] is not null and T[j].key = key then
return j

end if

i ← i + 1
until T[j] is null or i = m

return -1
end algorithm

Open Addressing Algorithms

algorithm Insert(T:array, x:item)
let m be the capacity of T
i ← 0

repeat
j ← h(x.key, i)

if T[j] is null then
T[j] ← x
return j

end if

i ← i + 1
until i = m

end algorithm
error: “table overflow”

algorithm Delete(T:array, x:item)
j ← Search(T, x.key)

if j ≠ -1 then
T[j] ← null

end if

end algorithm

That’s it?

13An item x has attributes x.key (integer), and x.data.

Delete when using Open Addressing
Do not delete! Do Something else.

14

Delete():

25 mod 11 = 3, and the key of T[3] is 25, so, delete!

Why Not? Let’s Delete Something

∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

15

Now Search():

13 mod 11 = 2, but the key of T[2] is 2.
14 mod 11 = 3, but T[3] is null. So…

Is in the hash table?! IT IS! But we cannot reach it now.

Why Not? Let’s Delete Something

∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

16

Solutions:
1) Label item as deleted.
2) Use a dummy object (aka. Tombstone).

Remember to update the Insert, Search,
and Delete functions adequately.

Issue: Clustering!
Occupying empty slots breaks uniformity

17

Issue: Clustering

∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

18

1

11

1

11

5

11

2

11

1

11

1

11

Also, longer search times if falling on long clusters.
Goal: Adjust 𝑚 such that 𝛼 =

𝑛

𝑚
is less than some threshold.

Open Addressing:
Analysis

Load Factor: 𝛼 =
𝑛

𝑚
< 1.

● Uniform Hashing Assumption: the
probe sequence of each key is equally
likely to be any of the 𝑚! permutations
of {0,1,… ,𝑚 − 1}.

● An insert requires at most 1/ 1 − 𝛼
probes.

● A successful search requires at most
1

𝛼
ln 1/ 1 − 𝛼 probes.

● An unsuccessful search requires at most
1/ 1 − 𝛼 expected probes.

19
Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press) (p. 298-299). The MIT Press.

Table Resizing

Goal: 𝛼 ≤
1

2

Double 𝑚 when 𝛼 ≥
1

2

Halve 𝑚 when 𝛼 ≤
1

8

Goal: 𝛼 constant

Double 𝑚 when 𝛼 ≥ 8

Halve 𝑚 when 𝛼 ≤ 2

Open AddressingChaining

01 02

Note: Do not forget to rehash the values after resizing the table.

20

Load factor: 3/5 = 0.6. Resize required.

New table capacity set to 11.

Tuple (5, dolor) is now at index 5.
Tuple (3, sit) is now at index 3.
Tuple (4, amet) is now at index 4.

Rehashing Example
0 1 2 3 4

+------------+---+---+----------+-----------+
| (5, dolor) | | | (3, sit) | (4, amet) |
+------------+---+---+----------+-----------+

0 1 2 3 4 5 6 7 8 9 10
+---+---+---+----------+-----------+------------+---+---+---+---+---+
| | | | (3, sit) | (4, amet) | (5, dolor) | | | | | |
+---+---+---+----------+-----------+------------+---+---+---+---+---+

21

Hash Table Limitations

Memory ConsumptionRange Queries Real Data

We need extra
capacity than the

number of keys we
have.

Previous(𝑘)?
Next(𝑘)?

Between(𝑘1,𝑘2)?
MaxKey()?
MinKey()?

Keys may not be
independent.

There could be bias.

22

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

𝒉 last slide = End

Do you have any questions?

23

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Hash Table with Open Addressing
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Open Addressing
	Slide 5: Remember: Collisions
	Slide 6: Collision Management Strategies
	Slide 7: Open Addressing Idea
	Slide 8: Open Addressing Idea
	Slide 9: Open Addressing: Probing
	Slide 10: Probing Patterns
	Slide 11: Example: Quadratic Probing
	Slide 12: Example: Quadratic Probing
	Slide 13: Open Addressing Algorithms
	Slide 14: Delete when using Open Addressing
	Slide 15: Why Not? Let’s Delete Something
	Slide 16: Why Not? Let’s Delete Something
	Slide 17: Issue: Clustering!
	Slide 18: Issue: Clustering
	Slide 19: Open Addressing: Analysis
	Slide 20: Table Resizing
	Slide 21: Rehashing Example
	Slide 22: Hash Table Limitations
	Slide 23: bold italic h open paren last , slide , close paren equals End

